Silicon–Germanium Nanowires: Chemistry and Physics in Play, from Basic Principles to Advanced Applications

Review Michele Amato et al.

Chem. Rev., 2014, 114 (2), pp 1371–1412
Publication Date (Web): November 22, 2013




1. Introduction

2. Growth Techniques, Morphology, and Structural Properties

2.1. Alloyed Nanowires

2.2. Axial Heterostructures

2.3. Radial Heterostructures

3. Chemical and Physical Properties

3.1. Electronic Properties

3.1.1. Modulation of the Electronic Properties by Composition Control

3.1.2. Interfaces at Work: Strain, Band-Offset, and Carrier Gases

3.1.3. Doped Nanowires

3.2. Thermal and Thermoelectric Properties

4. Theoretical Modeling

4.1. Electronic Structure

4.1.1. Quantum Confinement Effect and Band Offset

4.1.2. Size Effects

4.1.3. Alloying and Interface Effects

4.1.4. Strain Effects

4.1.5. Addition of Impurities

4.1.6. Electronic Transport

4.1.7. Optical Properties

4.2. Phonons and Thermal Conductivity

4.2.1. Breakdown of Fourier’s Law at Nanoscale

4.2.2. Numerical Simulations of Thermal Properties

5. Devices and Applications

5.1. High-Performance Nanoelectronic Components

5.1.1. Si1−xGex Alloy Nanowire Transistor

5.1.2. Si-Shell Ge-Core Nanowire Transistor

5.2. From Quantum Transport to Superconductivity:

SiGe Nanowires As Platforms for Fundamental Physics Studies

6. Conclusions and Perspectives

Laisser un commentaire